Retinoic acid induces p27Kip1 nuclear accumulation by modulating its phosphorylation.
نویسندگان
چکیده
All-trans-retinoic acid (ATRA), the most biologically active metabolite of vitamin A, controls cell proliferation, apoptosis, and differentiation depending on the cellular context. These activities point to ATRA as a candidate for cancer therapy. A pivotal effect of the molecule is the modulation of p27Kip1, a cyclin-dependent kinase (CDK) inhibitor (CDKI). Here, we investigate the mechanisms by which ATRA regulates p27Kip1 level in LAN-5, a neuroblastoma cell line. When added to the cells, ATRA causes a rapid nuclear increase of p27Kip1, which clearly precedes growth arrest. The early buildup is not due to impairment of the CDKI degradation, in contrast to previous observations. Particularly, we did not detect the down-regulation of Skp2 and Cks1, two proteins involved in the nuclear ubiquitin-dependent p27Kip1 removal. Moreover, the morphogen does not impair the CDKI nuclear export and does not cause CDK2 relocalization. The characterization of CDKI isoforms by two-dimensional PAGE/immunoblotting showed that ATRA induces an early nuclear up-regulation of monophosphorylated p27Kip1. Immunologic studies established that this isoform corresponds to p27Kip1 phosphorylated on S10. The buildup of phospho(S10)p27Kip1 precedes the CDKI accumulation and increases its half-life. Finally, ATRA-treated nuclear LAN-5 extracts showed an enhanced capability of phosphorylating p27Kip1 on S10, thus explaining the nuclear up-regulation of the isoform. In conclusion, our data suggest a novel mechanism of ATRA antiproliferative activity, in which the morphogen rapidly up-regulates a nuclear kinase activity that phosphorylates p27Kip1 on S10. In turn, this event causes the stabilization of p27Kip1 and its accumulation in the nuclear compartment.
منابع مشابه
Retinoic Acid Induces p27 Nuclear Accumulation by Modulating Its Phosphorylation
All-trans-retinoic acid (ATRA), the most biologically active metabolite of vitamin A, controls cell proliferation, apoptosis, and differentiation depending on the cellular context. These activities point to ATRA as a candidate for cancer therapy. A pivotal effect of the molecule is the modulation of p27, a cyclin-dependent kinase (CDK) inhibitor (CDKI). Here, we investigate the mechanisms by wh...
متن کاملThe B56γ3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1
The B56γ-containing protein phosphatase 2A (PP2A-B56γ) has been postulated to have tumor suppressive functions. Here, we report regulation of p27KIP1 subcellular localization by PP2A-B56γ3. B56γ3 overexpression enhanced nuclear localization of p27KIP1, whereas knockdown of B56γ3 decreased p27KIP1 nuclear localization. B56γ3 overexpression decreased phosphorylation at Thr157 (phospho-Thr157), wh...
متن کاملPhosphorylation and Subcellular Localization of p27Kip1 Regulated by Hydrogen Peroxide Modulation in Cancer Cells
The Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and br...
متن کاملRetinoic Acid-induced Rapid Loss of Nuclear Cyclic AMP-dependent Protein Kinase in 'l'erat(»carcinomaCells1
To determine what effect retinole acid might have in modulating cyclic AMP-mediated events at the nucleus of teratocarcinoma cells, we have investigated the effect of retinoic acid treatment of F9 and PC13 cells on cyclic AMP-dependent protein kinase activity and the amounts of the RI and RII cyclic AMP binding proteins present in the nuclear fraction. Exposure of F9 cells to retinoic acid (0.1...
متن کاملSIRT1-mediated deacetylation of CRABPII regulates cellular retinoic acid signaling and modulates embryonic stem cell differentiation.
Retinoid homeostasis is critical for normal embryonic development. Both the deficiency and excess of these compounds are associated with congenital malformations. Here we demonstrate that SIRT1, the most conserved mammalian NAD⁺-dependent protein deacetylase, contributes to homeostatic retinoic acid (RA) signaling and modulates mouse embryonic stem cell (mESC) differentiation in part through de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 66 8 شماره
صفحات -
تاریخ انتشار 2006